skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mukherjee, Rishav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given the prevalence of nitrogen-containing heterocycles in commercial drugs, selectively incorporating a single nitrogen atom is a promising scaffold hopping approach to enhance chemical diversity in drug discovery libraries. We harness the distinct reactivity of sulfenylnitrenes, which insert a single nitrogen atom to transform readily available pyrroles, indoles, and imidazoles into synthetically challenging pyrimidines, quinazolines, and triazines, respectively. Our additive-free method for skeletal editing employs easily accessible, benchtop-stable sulfenylnitrene precursors over a broad temperature range (−30 to 150°C). This approach is compatible with diverse functional groups, including oxidation-sensitive functionalities such as phenols and thioethers, and has been applied to various natural products, amino acids, and pharmaceuticals. Furthermore, we have conducted mechanistic studies and explored regioselectivity outcomes through density functional theory calculations. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  2. Gunnoe, Brent (Ed.)